The trace of uniform hypergraphs with application to Estrada index

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Maximum Estrada Index of 3-Uniform Linear Hypertrees

For a simple hypergraph H on n vertices, its Estrada index is defined as [Formula in text], where λ 1, λ 2,…, λ n are the eigenvalues of its adjacency matrix. In this paper, we determine the unique 3-uniform linear hypertree with the maximum Estrada index.

متن کامل

Alkanes with Greatest Estrada Index

Several hundreds of so-called molecular structuredescriptors were proposed in the chemical literature [1] and are used for modeling of various physical and chemical properties of (mainly) organicmolecules. In general, a molecular structure-descriptor is a number, usually computed from the molecular graph [2, 3], that reflects certain topological features [4, 5] of the underlying molecule. Many ...

متن کامل

The Estrada Index of Graphs

Let G be a simple n-vertex graph whose eigenvalues are λ1, . . . , λn. The Estrada index of G is defined as EE(G) = ∑n i=1 e λi . The importance of this topological index extends much further than just pure graph theory. For example, it has been used to quantify the degree of folding of proteins and to measure centrality of complex networks. The talk aims to give an introduction to the Estrada ...

متن کامل

On the Chromatic Index of Random Uniform Hypergraphs

Let H(n,N), where k ≥ 2, be a random hypergraph on the vertex set [n] = {1, 2, . . . , n} with N edges drawn independently with replacement from all subsets of [n] of size k. For d̄ = kN/n and any ε > 0 we show that if k = o(ln(d̄/ lnn)) and k = o(ln(n/ ln d̄)), then with probability 1−o(1) a random greedy algorithm produces a proper edge-colouring of H(n,N) with at most d̄(1+ε) colours. This yield...

متن کامل

Lower Bounds for Estrada Index

If G is an (n,m)-graph whose spectrum consists of the numbers λ1, λ2, . . . , λn, then its Estrada index is EE(G) = ∑n i=1 e λi . We establish lower bounds for EE(G) in terms of n and m. Introduction In this paper we are concerned with simple graphs, that have no loops and no multiple or directed edges. Let G be such a graph, and let n and m be the number of its vertices and edges. Then we say ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics, Algorithms and Applications

سال: 2023

ISSN: ['1793-8309', '1793-8317']

DOI: https://doi.org/10.1142/s1793830923500659